Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю?

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел. Мы уже знаем, что движение может быть равномерным и неравномерным , но существуют и другие характеристики движения. В частности, в зависимости от направления различают прямолинейное и криволинейное движение.

Прямолинейное движение

Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности

Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью

Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории направлен по хорде (рис. 1.19), а l – длина . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это :

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

В данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

— это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.


Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью
Законы взаимодействия и движения тел

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.


На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Сила, действующая на тело, может менять его скорость как по модулю, так и по направлению.

Пример силы, меняющей скорость по модулю – сила ветра, давящая на парус.

Такая сила вызывает прямолинейное движение тела .

Пример силы, меняющей скорость по направлению – центростремительная сила раскрученного груза на верёвке

Эта сила приводит к криволинейному движению .

Если тело движется по окружности с постоянной по модулю скоростью, то её ускорение называется центростремительным, направлено в центр окружности и вычисляется по формуле:

a = v 2 / r, где v – скорость, r – радиус окружности

a=ω 2 * r, где w – это угловая скорость тела на окружности в радианах в секунду.

В общем случае на тело действуют силы, меняющие скорость и по направлению, и по модулю. Пример представлен на рисунке – гравитационная сила одновременно и тормозит спутник, и искривляет его траекторию:

В таких случаях говорят, что у силы есть тангенциальная и нормальная составляющие. Тангенциальная составляющая силы – это та, что направлена вдоль (или против) скорости и разгоняет (или замедляет) тело.

Нормальная составляющая силы – это та, что действует перпендикулярно движению и меняет направление скорости.

Для криволинейной траектории в любой точке можно посчитать радиус кривизны по формуле:

R = v 2 / a n , где v – это скорость тела, а a n – нормальная (перпендикулярно скорости) составляющая ускорения.

Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание

Сегодня мы продолжим изучать движение. Нами были рассмотрены случаи, когда тела двигались только прямолинейно, то есть по прямой линии. Но так ли уж часто такое движение мы встречаем в жизни? Конечно же, нет. Тела обычно движутся по криволинейным траекториям. Движение планет, поездов, животных - все это будет примером криволинейного движения. Описать такое движение сложнее. Изменение координат будет происходить, как минимум, по двум осям, например OX и OY. Сравним, как направлены вектора скорости и перемещения при прямолинейном и криволинейном движении. Когда тело движется по прямой, то направление вектора скорости и вектора перемещения всегда совпадают. Для того, чтобы ответить на этот же вопрос в случае криволинейного движения, рассмотрим рисунок. Предположим, что тело движется из точки М1 в точку М2 по дуге. Путь - это длина дуги, перемещение - вектор М1М2. В геометрии, такой отрезок называют хордой. Мы видим, что направление скорости и перемещения не совпадают. При криволинейном движении мы будем говорить о мгновенной скорости. Мгновенная скорость тела в каждой точки криволинейной траектории направлена по касательной к траектории в этой точке. Убедиться в этом можно, наблюдая за брызгами из-под колес автомобиля, они так же вылетают по касательной к окружности колеса. Обратите внимание, что скорость имеет в каждой точке криволинейной траектории различное направление, поэтому даже при условии, что модуль скорости остался прежним, если изменилось направление движения, то рассматривать нужно новый вектор. Из того, что скорость непрерывно меняется, следует, что и ускорение так же будет меняться. Следовательно, криволинейное движение - это движение с ускорением. Предположим, тело движется по некоторой криволинейной траектории. Таких траекторий может быть бесчисленное множество, неужели, для каждого из них придется описывать свои законы движения? Оказывается, отдельные части траектории можно, приблизительно, представить, как дуги окружностей. И само криволинейное движение, в большинстве случаев, можно представить как совокупность движений по дугам окружностей различного радиуса. Изучив движение по окружности, мы сможем описывать более сложные случаи движения. Запомним, если скорость тела и действующая на него сила направлены вдоль одной прямой, то тело движется прямолинейно, а если они направлены вдоль пересекающихся прямых, то тело движется криволинейно. Определите, по какой траектории полетит камень, вращающийся на нити, если нить внезапно оборвется? Мгновенная скорость камня направлена по касательной к криволинейной линии, следовательно, в момент обрыва, согласно закону инерции, тело будет двигаться, сохраняя прежнюю скорость, то есть по этой же касательной. Грузовик движется по криволинейной траектории. Скорость движения по модулю величина постоянная. Можно ли утверждать, что ускорение грузовика равно нулю? Утверждать, что ускорение грузовика равно нулю нельзя, так как скорость имеет в каждой точке криволинейной траектории различное направление, поэтому даже при условии, что модуль скорости остался прежним, то рассматривать нужно новый вектор. Из того, что скорость непрерывно меняется, следует, что и ускорение так же будет изменяться. Мы уже знаем, что причиной ускорения является сила. Укажите, на каких участках криволинейного движения сила действовала?
Ответ обоснуйте. На траектории сделаны отметки положения тела через равные промежутки времени. Сила действовала на участке 0-3. Тело двигалось прямолинейно, но скорость тела менялась (тело двигалось ускоренно), то есть под действием силы. Сила действовала на участке 7-8. Величина скорости не изменилась, но направление поменялось (тело двигалось ускоренно), то есть под действием силы.


Close