ОПРЕДЕЛЕНИЕ

Неметаллы – химические элементы, атомы которых принимают электроны для завершения внешнего энергетического уровня, образуя при этом отрицательно заряженные ионы. Электронная конфигурация валентных электронов неметаллов в общем виде — ns 2 np 1−5 Исключение составляют водород (1s 1) и гелий (1s 2), которые тоже рассматривают как неметаллы.

Неметаллы обычно обладают большим спектром степеней окисления в своих соединениях. Большее число электронов на внешнем энергетическом уровне по сравнению с металлами определяет их большую способность к присоединению электронов и проявлению высокой окислительной активности.

Нахождение неметаллов в природе

Неметаллы находятся в земной коре (в большинстве своем кислород и кремний — 76 % от массы земной коры а также As, Se, I, Te, но в очень незначительных количествах), в воздухе (азот и кислород) , в составе растительной массы (98,5 % — углерод, водород, кислород, сера, фосфор и азот), а также в основе массы человека (97,6 % — — углерод, водород, кислород, сера, фосфор и азот). Водород и гелий – входят в состав космических объектов, включая Солнце. Чаще всего в природе неметаллы встречаются в виде соединений.

Физические свойства неметаллов

Фтор, хлор, кислород, азот, водород и инертные газы представляют собой газообразные вещества, йод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор –твёрдые вещества; бром -жидкость.

Положение неметаллов в Периодической системе Д.И. Менделеева

Если в Периодической системе мысленно провести диагональ от бериллия к астату, то в правом верхнем углу таблицы будут находиться элементы-неметаллы. Среди неметаллов есть s-элемент – водород; р-элементы бор; углерод, кремний; азот, фосфор, мышьяк, кислород, сера, селен, теллур, галогены и астат. Элементы VIII группы – инертные (благородные) газы, которые имеют полностью завершенный внешний энергетический уровень и их нельзя отнести ни к металлам, ни к неметаллам.

Неметаллы обладают высокими значениями сродства к электрону, электроотрицательность и окислительно-восстановительный потенциал.

Получение неметаллов

Многообразие неметаллов породило многообразие способов их получения, так водород получают, как лабораторными способами, например, взаимодействием металлов с кислотами (1), так и промышленными способами, например, конверсией метана (2).

Zn +2HCl = ZnCl 2 + H 2

CH 4 + H 2 O = CO + 3H 2 (температура 900 С)

Получение галогенов осуществляют в основном, путем окисления галогеноводородных кислот:

MnO 2 +4HCl = MnCl 2 + Cl 2 + 2H 2 O

K 2 Cr 2 O 7 +14HCl= 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O

2KMnO 4 +16HCl = 2 MnCl 2 +5Cl 2 +8H 2 O+ 2KCl

Для получения кислорода используют реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 +O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 +2Cr 2 O 3 +3O 2

Серу получают неполным окислением сероводорода (1) или по реакции Вакенродера (2):

H 2 S + O 2 =2S +2H 2 O (1)

2H 2 S + SO 2 =3S↓ +2H 2 O (2)

Для получения азота используют реакцию разложения нитрита аммония:

NaNO 2 +NH 4 Cl = N 2 + NaCl +2H 2 O

Основной способ получения фосфора – из фосфата кальция:

Ca 3 (PO 4) 2 +3SiO 2 +5C = 3CaSiO 3 +5CO +2P

Химические свойства неметаллов

Основные химические свойства неметаллов (общие для всех) – это:

— взаимодействие с металлами

2Na + Cl 2 = 2NaCl

6Li + N 2 = 2Li 3 N

2Ca + O 2 = 2CaO

— взаимодействие с другими неметаллами

3H 2 + N 2 = 2NH 3

H 2 + Br 2 = 2HBr

4P + 5O 2 = 2P 2 O 5

2F 2 + O 2 = 2OF 2

S + 3F 2 = SF 6 ,

C + 2Cl 2 = CCl 4

Каждый неметалл обладает специфическими химическими свойствами, характерными только для него, которые подробно рассматривают при изучении каждого неметалла в отдельности.

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений S→H 2 S→SO 2 →SO 3 →H 2 SO 4
Решение S + H 2 = H 2 S

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O

2SO 2 + O 2 = 2SO 3

SO 3 + H 2 O = H 2 SO 4

Неметаллы — элементы с 14-ой по 16-ую группы таблицы Менделеева . Они почти не проводят электричество и тепло. Неметаллы очень хрупкие и практически не изгибанию и любым другим деформациям. Они могут существовать в 2х из 3х состояний материи при комнатной температуре: газ (например, кислород) и твердые вещества (например, углерод). Неметаллы, не обладают металлическим блеском и не отражают свет.

Взаимодействие неметаллов с простыми веществами.

1. Взаимодействие неметаллов с металлами :

2Na + Cl 2 = 2NaCl ,

Fe + S = FeS ,

6Li + N 2 = 2Li 3 N ,

2Ca + O 2 = 2CaO.

в подобных случаях неметаллы проявляют окислительные свойства (принимают электроны, образуя отрицательно заряженные частицы).

2. Взаимодействие неметаллов с другими неметаллами:

  • взаимодействуя с водородом, почти все неметаллы проявляет окислительные свойства, при этом образуя летучие водородные соединения - ковалентные гидриды:

3H 2 + N 2 = 2NH 3 ,

H 2 + Br 2 = 2HBr ;

  • взаимодействуя с кислородом, все неметаллы, кроме фтора , проявляют восстановительные свойства:

S + O 2 = SO 2 ,

4P + 5O 2 = 2P 2 O 5 ;

  • при взаимодействии с фтором фтор является окислителем, а кислород - восстановителем:

2F 2 + O 2 = 2OF 2 ;

  • неметаллы взаимодействуют между собой, более электроотрицательный металл играет роль окислителя, менее электроотрицательный - роль восстановителя:

S + 3F 2 = SF 6 ,

Лекция 24

Неметаллы.

План лекции:

Неметаллы – простые вещества

Положение неметаллов в периодической системе

Число элементов-неметаллов значительно меньше, чем элементов-металлов Типичными неметаллическими свойствами обладают десять химических элементов (Н, С, N, Р, О, S, F, Cl, Br, I). Шесть элементов, которые обычно относят к неметаллам, проявляют двойственные (и металлические, и неметаллические) свойства (В, Si, As, Se, Те, At). И еще 6 элементов в последнее время стали включать в список неметаллов. Это так называе­мые благородные (или инертные) газы (Не, Ne, Аг, Кг, Хе, Rn). Итак, 22 из известных химических эле­ментов принято относить к неметаллам.

Элементы, проявляющие неметаллические свойства в периодической системе располагаются выше диагонали бор-астат (рис. 26).

Атомы большинства неметаллов, в отличие от ато­мов металлов, на внешнем электронном слое имеют боль­шое число электронов - от 4 до 8. Исключение состав­ляют атомы водорода, гелия, бора, которые имеют на внешнем уровне 1, 2 и 3 электрона соответственно.

Среди неметаллов только два элемента - водород (1s 1) и гелий (1s 2) относятся к s-семейству, все остальные при­надлежат к р -семейству.

Атомы типичных неметаллов (A) характеризуются высокой электроотрицательностью и большим сродством к электрону, что обусловливает их способность образо­вывать отрицательно заряженные ионы с электронными конфигурациями соответствующих инертных газов:

А 0 + nê → А n -

Эти ионы входят в состав ионных соединений неме­таллов с типичными металлами. Отрицательные степени окисления неметаллы имеют также в ковалентных соединениях с другими менее элек­троотрицательными неметаллами (в частности, с водоро­дом).

Атомы неметаллов в ковалентных соединениях с бо­лее электроотрицательными неметаллами (в частности, с кислородом) имеют положительные степени окисления. Высшая положительная степень окисления неметалла , как правило, равна номеру группы , в которой он нахо­дится.



Неметаллы – простые вещества

Несмотря на небольшое число элементов-неметаллов, их роль и значение как на Земле, так и в космосе огром­ны. 99% массы Солнца и других звезд составляют неме­таллы водород и гелий. Воздушная оболочка Земли со­стоит из атомов неметаллов - азота, кислорода и благо­родных газов. Гидросфера Земли образована одним из важнейших для жизни веществ - водой, молекулы ко­торой состоят из неметаллов водорода и кислорода. В живой материи главенствуют 6 неметаллов - углерод, кислород, водород, азот, фосфор, сера.

При обычных условиях вещества-неметаллы суще­ствуют в разных агрегатных состояниях:

1) газы: водород Н 2 , кислород О 2 , азот N 2 , фтор F 2 , хлор С1 2 , инертные газы: Не, Ne, Ar, Кг, Хе, Rn

2) жидкости: бром Вг 2

3) твердые вещества йод I 2 , углерод С, кремний Si, сера S, фосфор Р и др.

Семь элементов-неметаллов образуют простые веще­ства, существующие в виде двухатомных молекул Э 2 (водород Н 2 , кислород О 2 , азот N 2, фтор F 2 , хлор С1 2 , бром Вг 2, йод I 2) .

Так как в кристаллической решетке неметаллов между атомами нет свободных электронов, они отличаются по физическим свойствам от металлов:

¾ не имеют блеска;

¾ хрупкие, имеют различную твердость;

¾ плохо проводят тепло и электричество.

Твердые вещества-неметаллы в воде практически не­растворимы; газообразные О 2 , N 2 , Н 2 и галогены облада­ют очень малой растворимостью в воде.

Для ряда неметаллов характерна аллотропия - явление су­ществование одного элемента в виде нескольких простых веществ. Аллотропные модификации извес­тны для кислорода (кислород О 2 и озон О 3), серы (ромбичес­кая, моноклинная и пластическая), фосфора (белый, крас­ный и черный), углерода (графит, алмаз и карбин и др.), крем­ния (кристаллический и аморфный).

Химические свойства неметаллов

По химической активности неметаллы существенно различаются между собой. Так, азот и благородные газы, в химические реакции вступают только при очень жестких условиях (высокое давление и температура, наличие катализатора).

Наиболее химически активными неметаллами явля­ются галогены, водород и кислород. Сера, фосфор, а осо­бенно углерод и кремний реакционноспособны только при повышенных температурах.

Неметаллы в химических реакциях проявляют и окис­лительные, и восстановительные свойства. Наиболее высокая окислительная способность характерна для га­логенов и кислорода. У таких неметаллов, как водород, углерод, кремний, преобладают восстановительные свой­ства.

I. Окислительные свойства неметаллов:

1. Взаимодействие с металлами. При этом образуются бинарные соединения: с кислородом – оксиды, с водородом – гидриды, азотом – нитриды, галогенами – галогениды и т.д.:

2Cu + O 2 → 2CuO

2Fe + 3Cl 2 → 2FeCl 3

2. Взаимодействие с водородом. Неметаллы выступают в качестве окислителей и в реакциях с водородом, образуя при этом летучие водородные соеди­нения:

Н 2 + С1 2 → 2НС1

N 2 + 3Н 2 → t, p, кат. 2NH 3

3. Взаимодействие с неметаллами. Неметаллы проявляют окислительные свойства также в реакциях с менее электроотрицательными неметаллами:

2Р + 5С1 2 → 2РС1 5 ;

С + 2S → CS 2 .

4. Взаимодействие со сложными веществами. Окислительные свойства неметаллов могут проявляться и в реакциях со сложными веществами. Например, вода го­рит в атмосфере фтора:

2F 2 + 2Н 2 О → 4HF + О 2 .

II. Восстановительные свойства неметаллов

1. Взаимодействие с неметаллами . Восстановительные свойства неметаллы могут проявлять по отношению к неметаллам с большей электроотрицатель­ностью, и в первую очередь по отношению к фтору и кисло­роду:

4Р + 5О 2 → 2Р 2 О 5 ;

N 2 + О 2 → 2NO

2. Взаимодействие со сложными веществами. Некоторые неметаллы могут являться восстановителя­ми, что позволяет применять их в металлургическом произ­водстве:

С + ZnO Zn + СО;

5Н 2 + V 2 О 5 → 2V + 5Н 2 О.

SiО 2 + 2С → Si + 2СО.

Восстановительные свойства неметаллы проявляют при взаимодействии со сложными веществами - сильными окис­лителями, например:

3S + 2КСlO 3 → 3SO 2 + 2КС1;

6Р + 5КСlO 3 → ЗР 2 O 5 + 5КС1.

С + 2H 2 SО 4 → СО 2 + 2SО 2 + 2Н 2 О;

3Р + 5HNО 3 + 2Н 2 О → ЗН 3 РО 4 + 5NO.

Общие способы получения неметаллов

Некоторые неметаллы встречаются в природе в свободном состоянии: это сера, кислород, азот, благородные газы. В первую очередь простые вещества - не­металлы входят в состав воздуха.

Большие количества газообразных кислорода и азота получают ректификацией воздуха (разделением).

Наиболее активные неме­таллы - галогены - получа­ют электролизом расплавов или растворов из соедине­ний. В промышленности с помощью электролиза в больших количествах получают одновременно три важнейших про­дукта: ближайший аналог фтора - хлор, водород и гидро­ксид натрия. В качестве электролита используют раствор хлори­да натрия, подаваемый в электролизер сверху.

Более подробно способы получения неметаллов будут рассмотрены далее, в соответствующих лекциях.

Дмитрий Менделеев смог создать уникальную таблицу химических элементов, главным достоинством которой была периодичность. Металлы и неметаллы в таблице Менделеева располагаются так, что их свойства изменяются периодическим образом.

Периодическая таблица Менделеева

Периодическая система была составлена Дмитрием Менделеевым во второй половине 19 века. Открытие не только позволило упростить работу химиков, она смогла объединить в себе как в единой системе все открытые химические вещества, а также предсказать будущие открытия.

Создание данной структурированной системы бесценно для науки и для человечества в целом. Именно это открытие дало толчок развитию всей химии на долгие годы.

Интересно знать ! Существует легенда, что готовая система привиделась ученому во сне.

В интервью одному журналисту ученый объяснил, что работал над ней 25 лет и то, что она ему снилась – вполне естественно, но это не значит, что во сне пришли все ответы.

Созданная Менделеевым система делится на две части:

  • периоды – столбики по горизонтали в одну или две строки (ряды);
  • группы – вертикальные строчки, в один ряд.

Всего в системе 7 периодов, каждый следующий элемент отличен от предыдущего большим количеством электронов в ядре, т.е. заряд ядра каждого правого показателя больше левого на единицу. Каждый период начинается с металла, а заканчивается инертным газом – именно это и есть периодичность таблицы, ведь свойства соединений меняются внутри одного периода и повторяются в следующем . При этом, следует помнить, что 1-3 периоды неполные или малые, в них всего 2, 8 и 8 представителей. В полном периоде (т.е. оставшихся четырех) по 18 химических представителей.

В группе располагаются химические соединения с одинаковой высшей , т.е. у них одинаковое электронное строение. Всего в системе представлено 18 групп (полная версия), каждая из которых начинается щелочью и заканчивается инертным газом. Все, представленные в системе субстанции, можно разделить на две основные группы – металл или неметалл.

Для облегчения поиска группы имеют свое название, а металлические свойства субстанций усиливаются с каждой нижней строчкой, т.е. чем ниже соединение, тем больше у него будет атомных орбит и тем слабее электронные связи. Также меняется и кристаллическая решетка – она становится ярко выраженной у элементов с большим количеством атомных орбит.

В химии используют три вида таблиц:

  1. Короткая – актиноиды и лантаноиды вынесены за границы основного поля, а 4 и все последующие периоды занимают по 2 строчки.
  2. Длинная – в ней актиноиды и лантаноиды вынесены за границу основного поля.
  3. Сверхдлинная – каждый период занимает ровно 1 строку.

Главной считается та таблица Менделеева, которая была принята и подтверждена официально, но для удобства чаще используют короткую версию. Металлы и неметаллы в таблице Менделеева располагаются согласно строгим правилам, которые облегчают работу с ней.

Металлы в таблице Менделеева

В системе Менделеева сплавы имеют преобладающее число и список их весьма велик – они начинаются с Бора (В) и заканчиваются полонием (Po) (исключением являются германий (Ge) и сурьма (Sb)). У этой группы есть характерные признаки, они разделены на группы, но их свойства при этом неоднородны. Характерные их признаки:

  • пластичность;
  • электропроводимость;
  • блеск;
  • легкая отдача электронов;
  • ковкость;
  • теплопроводность;
  • твердость (кроме ртути).

Из-за различной химической и физической сути свойства могут существенно отличаться у двух представителей этой группы, не все они похожи на типичные природные сплавы, к примеру, ртуть – это жидкая субстанция, но относится к данной группе.

В обычном своем состоянии она жидкая и без кристаллической решетки, которая играет ключевую роль в сплавах. Только химические характеристики роднят ртуть с данной группой элементов, несмотря на условность свойств этих органических соединений. То же самое касается и цезия – самого мягкого сплава, но он не может в природе существовать в чистом виде.

Некоторые элементы такого типа могут существовать только доли секунды, а некоторые не встречаются в природе совсем – их создали в искусственных условиях лаборатории. У каждой из групп металлов в системе есть свое название и признаки, которые отличают их от других групп.

При этом отличия у них весьма существенные. В периодической системе все металлы располагаются по количеству электронов в ядре, т.е. по увеличению атомной массы. При этом для них характерно периодическое изменение характерных свойств. Из-за этого в таблице они не размещаются аккуратно, а могут стоять неправильно.

В первой группе щелочей нет веществ, которые бы встречались в чистом виде в природе – они могут пребывать только в составе различных соединений.

Как отличить металл от неметалла?

Как определить металл в соединении? Существует простой способ определения, но для этого необходимо иметь линейку и таблицу Менделеева. Для определения надо:

  1. Провести условную линию по местам соединения элементов от Бора до Полония (можно до Астата).
  2. Все материалы, которые будут слева линии и в побочных подгруппах – металл.
  3. Вещества справа – другого типа.

Однако у способа есть изъян – он не включает в группу Германий и Сурьму и работает только в длинной таблице. Метод можно использовать в качестве шпаргалки, но чтобы точно определить вещество, следует запомнить список всех неметаллов. Сколько их всего? Мало – всего 22 вещества.

В любом случае, для определения природы вещества необходимо рассматривать его в отдельности. Легко будет элементы, если знать их свойства. Важно запомнить, что все металлы:

  1. При комнатной температуре – твердые, за исключением ртути. При этом они блестят и хорошо проводят электрический ток.
  2. У них на внешнем уровне ядра меньшее количество атомов.
  3. Состоят из кристаллической решетки (кроме ртути), а все другие элементы имеют молекулярную или ионную структуру.
  4. В периодической системе все неметаллы – красного цвета, металлы – черного и зеленого.
  5. Если двигаться слева направо в периоде, то заряд ядра вещества будет увеличиваться.
  6. У некоторых веществ свойства выражены слабо, но они все равно имеют характерные признаки. Такие элементы относятся к полуметаллам, например Полоний или Сурьма, они обычно располагаются на границе двух групп.

Внимание! В левой нижней части блока в системе всегда стоят типичные металлы, а в правой верхней — типичные газы и жидкости.

Важно запомнить, что при перемещении в таблице сверху вниз становятся сильнее неметаллические свойства веществ, поскольку там располагаются элементы, которые имеют отдаленные внешние оболочки . Их ядро отделено от электронов и поэтому они притягиваются слабее.

Полезное видео

Подведем итоги

Отличить элементы будет просто, если знать основные принципы формирования таблицы Менделеева и свойства металлов. Полезно будет также запомнить и список остальных 22 элементов. Но не нужно забывать, что любой элемент в соединении следует рассматривать в отдельности, не учитывая его связей с другими веществами.

Вконтакте

Неметаллы Окислители.

В реакциях с металлами неметаллы проявляют себя как окислители .

А. Особенно активно с металлами взаимодействуют галогены. В результате реакций соединения образуются соли - галогениды.

Например , при взаимодействии алюминия с иодом образуется иодид алюминия AlI 3 :

2 Al 0 +3 I 20 −→− H 2 O 2 Al +3 I 3−1 .

Железо активно реагирует с хлором, образуя хлорид железа ( III ) FeCl 3 :

2 Fe 0 +3 Cl 20 −→− t o 2 Fe +3 Cl 3−1 .

Реакция соединения алюминия с серой начинается после того, как смесь веществ нагрели. Продуктом реакции является сульфид алюминия AlS 32 :

2 Al 0 +3 S 0 −→− t o Al 2+3 S 3−2 .

Химическое взаимодействие между натрием и серой протекает при простом механическом смешивании. В результате образуется сульфид натрия NaS 2 :

2 Na 0 + S 0 Na 2+1 S −2 .

N 20 + 3 H 20 t o , p 2 N 3 H 3 + 1 .

H 20 + Cl 20 −→− t o 2 H + 1 Cl 1 .

Неметаллы Восстановители.

Кислород имеет высокую электроотрицательность, поэтому в реакциях с другими неметаллами он является окислителем, а другие неметаллы - восстановителями .

В результате соединения кислорода с другими неметаллами образуются оксиды.

Например , сера сгорает в кислороде, образуя сернистый газ или оксид серы ( IV ) SO 2 :

S 0 + O 20 S +4 O 2−2 .

Фосфор энергично cгорает в кислороде ярким пламенем. В ходе реакции образуются белые клубы оксида фосфора ( V ) PO 52 :

4 P 0 +5 O 20 →2 P 2+5 O 5−2 .

В то же самое время взаимодействие кислорода с химически малоактивным азотом протекает медленно и начинается только при очень высокой температуре. Продуктом реакции является газообразный оксид азота ( II ) NO :

N 20 + O 20 −→− t o 2 N +2 O −2 .

Неметаллы как восстановители

1. Все неметаллы (кроме фтора) проявляют восстановительные свойства при взаимодействии с кислородом:

S + O 2 = SO 2 , 2H 2 + O 2 = 2H 2 О.

Кислород в соединении с фтором может проявлять и положительную степень окисления, т. е. являться восстановителем. Все остальные неметаллы проявляют восстановительные свойства. Так, например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить его оксиды (Cl 2 O, ClO 2 , Cl 2 O 2 ), в которых хлор проявляет положительную степень окисления. Азот при высокой температуре непосредственно соединяется с кислородом и проявляет восстановительные свойства. Еще легче с кислородом реагирует сера.

2. Многие неметаллы проявляют восстановительные свойства при взаимодействии со сложными веществами:

ZnO + C = Zn + CO, S + 6HNO 3 конц = H 2 SO 4 + 6NO 2 + 2H 2 О .

3. Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем и восстановителем:

Cl 2 + H 2 О = HCl + HClO.

4. Фтор ― самый типичный неметалл, которому нехарактерны восстановительные свойства, т. е. способность отдавать электроны в химических реакциях

Окислитель - это вещество или химический элемент, принимающие электроны в окислительно-восстановительной реакции, и понижающий степень окисления. Восстановитель - это вещество или химический элемент, отдающие электроны в окислительно-восстановительной реакции, и повышающий степень окисления.


Close